Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(14): 9917-9928, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38548470

RESUMO

Single-walled carbon nanotube (SWCNT) films exhibit exceptional optical and electrical properties, making them highly promising for scalable integrated devices. Previously, we employed SWCNT films as templates for the chemical vapor deposition (CVD) synthesis of one-dimensional heterostructure films where boron nitride nanotubes (BNNTs) and molybdenum disulfide nanotubes (MoS2NTs) were coaxially nested over the SWCNT networks. In this work, we have further refined the synthesis method to achieve precise control over the BNNT coating in SWCNT@BNNT heterostructure films. The resulting structure of the SWCNT@BNNT films was thoroughly characterized using a combination of electron microscopy, UV-vis-NIR spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, and Raman spectroscopy. Specifically, we investigated the pressure effect induced by BNNT wrapping on the SWCNTs in the SWCNT@BNNT heterostructure film and demonstrated that the shifts of the SWCNT's G and 2D (G') modes in Raman spectra can be used as a probe of the efficiency of BNNT coating. In addition, we studied the impact of vacuum annealing on the removal of the initial doping in SWCNTs, arising from exposure to ambient atmosphere, and examined the effect of MoO3 doping in SWCNT films by using UV-vis-NIR spectroscopy and Raman spectroscopy. We show that through correlation analysis of the G and 2D (G') modes in Raman spectra, it is possible to discern distinct types of doping effects as well as the influence of applied pressure on the SWCNTs within SWCNT@BNNT heterostructure films. This work contributes to a deeper understanding of the strain and doping effect in both SWCNTs and SWCNT@BNNTs, thereby providing valuable insights for future applications of carbon-nanotube-based one-dimensional heterostructures.

2.
ACS Appl Mater Interfaces ; 15(8): 10965-10973, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36800512

RESUMO

The nanotube/dielectric interface plays an essential role in achieving superb switching characteristics of carbon nanotube-based transistors for energy-efficient computation. Formation of van der Waals heterostructures with hexagonal boron nitride nanotubes could be an effective means to reduce interface state density, but the need for isolating nanotubes during the formation of coaxial outer layers has hindered the fabrication of their horizontal arrays. Here, we develop a strategy to create isolated heterostructure arrays using aligned carbon nanotubes grown on a quartz substrate as starting materials. Air-suspended arrays of carbon nanotubes are prepared by a dry transfer technique and then used as templates for the coaxial wrapping of boron nitride nanotubes. We then fabricate the transistors, where boron nitride serves as interfacial layers between carbon nanotube channels and conventional gate dielectrics, showing hysteresis-free characteristics owing to the improved interfaces. We have also gained a deeper understanding of the strain applied on inner carbon nanotubes, as well as the inhomogeneity of the outer coating, by characterizing individual heterostructures over trenches and on a substrate surface. The device fabrication and characterization presented here essentially do not require elaborate electron microscopy, thus paving the way for the practical use of one-dimensional van der Waals heterostructures for nanoelectronics.

3.
Nat Commun ; 13(1): 2814, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595760

RESUMO

Organic color centers in single-walled carbon nanotubes have demonstrated exceptional ability to generate single photons at room temperature in the telecom range. Combining the color centers with pristine air-suspended nanotubes would be desirable for improved performance, but all current synthetic methods occur in solution which makes them incompatible. Here we demonstrate the formation of color centers in air-suspended nanotubes using a vapor-phase reaction. Functionalization is directly verified by photoluminescence spectroscopy, with unambiguous statistics from more than a few thousand individual nanotubes. The color centers show strong diameter-dependent emission, which can be explained with a model for chemical reactivity considering strain along the tube curvature. We also estimate the defect density by comparing the experiments with simulations based on a one-dimensional exciton diffusion equation. Our results highlight the influence of the nanotube structure on vapor-phase reactivity and emission properties, providing guidelines for the development of high-performance near-infrared quantum light sources.

4.
Nano Lett ; 22(8): 3495-3502, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35315666

RESUMO

Ultrastrong coupling of light and matter creates new opportunities to modify chemical reactions or develop novel nanoscale devices. One-dimensional Luttinger-liquid plasmons in metallic carbon nanotubes are long-lived excitations with extreme electromagnetic field confinement. They are promising candidates to realize strong or even ultrastrong coupling at infrared frequencies. We applied near-field polariton interferometry to examine the interaction between propagating Luttinger-liquid plasmons in individual carbon nanotubes and surface phonon polaritons of silica and hexagonal boron nitride. We extracted the dispersion relation of the hybrid Luttinger-liquid plasmon-phonon polaritons (LPPhPs) and explained the observed phenomena by the coupled harmonic oscillator model. The dispersion shows pronounced mode splitting, and the obtained value for the normalized coupling strength shows we reached the ultrastrong coupling regime with both native silica and hBN phonons. Our findings predict future applications to exploit the extraordinary properties of carbon nanotube plasmons, ranging from nanoscale plasmonic circuits to ultrasensitive molecular sensing.

5.
ACS Nano ; 16(4): 5627-5635, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35316012

RESUMO

Single-walled carbon nanotubes have been a candidate for outperforming silicon in ultrascaled transistors, but the realization of nanotube-based integrated circuits requires dense arrays of purely semiconducting species. In order to directly grow such nanotube arrays on wafers, control over kinetics and thermodynamics in tube-catalyst systems plays a key role, and further progress requires a comprehensive understanding of seemingly contradictory reports on the growth kinetics. Here, we propose a universal kinetic model that decomposes the growth rates of nanotubes into the adsorption and removal of carbon atoms on the catalysts, and we provide its quantitative verification by ethanol-based isotope labeling experiments. While the removal of carbon from catalysts dominates the growth kinetics under a low supply of precursors, resulting in chirality-independent growth rates, our kinetic model and experiments demonstrate that chiral angle-dependent growth rates emerge when sufficient amounts of carbon and etching agents are cosupplied. The kinetic maps, as a product of generalizing the model, include five types of kinetic selectivity that emerge depending on the absolute quantities of gases with opposing effects. Our findings not only resolve discrepancies existing in the literature but also offer rational strategies to control the chirality, length, and density of nanotube arrays for practical applications.

6.
Proc Natl Acad Sci U S A ; 118(37)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34508003

RESUMO

We recently synthesized one-dimensional (1D) van der Waals heterostructures in which different atomic layers (e.g., boron nitride or molybdenum disulfide) seamlessly wrap around a single-walled carbon nanotube (SWCNT) and form a coaxial, crystalized heteronanotube. The growth process of 1D heterostructure is unconventional-different crystals need to nucleate on a highly curved surface and extend nanotubes shell by shell-so understanding the formation mechanism is of fundamental research interest. In this work, we perform a follow-up and comprehensive study on the structural details and formation mechanism of chemical vapor deposition (CVD)-synthesized 1D heterostructures. Edge structures, nucleation sites, and crystal epitaxial relationships are clearly revealed using transmission electron microscopy (TEM). This is achieved by the direct synthesis of heteronanotubes on a CVD-compatible Si/SiO2 TEM grid, which enabled a transfer-free and nondestructive access to many intrinsic structural details. In particular, we have distinguished different-shaped boron nitride nanotube (BNNT) edges, which are confirmed by electron diffraction at the same location to be strictly associated with its own chiral angle and polarity. We also demonstrate the importance of surface cleanness and isolation for the formation of perfect 1D heterostructures. Furthermore, we elucidate the handedness correlation between the SWCNT template and BNNT crystals. This work not only provides an in-depth understanding of this 1D heterostructure material group but also, in a more general perspective, serves as an interesting investigation on crystal growth on highly curved (radius of a couple of nanometers) atomic substrates.

7.
Small ; 17(38): e2102585, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34355517

RESUMO

1D van der Waals heterostructures based on carbon nanotube templates are raising a lot of excitement due to the possibility of creating new optical and electronic properties, by either confining molecules inside their hollow core or by adding layers on the outside of the nanotube. In contrast to their 2D analogs, where the number of layers, atomic type and relative orientation of the constituting layers are the main parameters defining physical properties, 1D heterostructures provide an additional degree of freedom, i.e., their specific diameter and chiral structure, for engineering their characteristics. The current state-of-the-art in synthesizing 1D heterostructures are discussed here, in particular focusing on their resulting optical properties, and details the vast parameter space that can be used to design heterostructures with custom-built properties that can be integrated into a large variety of applications. First, the effects of van der Waals coupling on the properties of the simplest and best-studied 1D heterostructure, namely a double-walled carbon nanotube, are described, and then heterostructures built from the inside and the outside are considered, which all use a nanotube as a template, and, finally, an outlook is provided for the future of this research field.

8.
Nat Commun ; 12(1): 3138, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035306

RESUMO

When continued device scaling reaches the ultimate limit imposed by atoms, technology based on atomically precise structures is expected to emerge. Device fabrication will then require building blocks with identified atomic arrangements and assembly of the components without contamination. Here we report on a versatile dry transfer technique for deterministic placement of optical-quality carbon nanotubes. Single-crystalline anthracene is used as a medium which readily sublimes by mild heating, leaving behind clean nanotubes and thus enabling bright photoluminescence. We are able to position nanotubes of a desired chirality with a sub-micron accuracy under in-situ optical monitoring, thereby demonstrating deterministic coupling of a nanotube to a photonic crystal nanobeam cavity. A cross junction structure is also designed and constructed by repeating the nanotube transfer, where intertube exciton transfer is observed. Our results represent an important step towards development of devices consisting of atomically precise components and interfaces.

9.
Sci Adv ; 5(5): eaat9459, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31236457

RESUMO

Recently, W-based catalysts have provided a promising route to synthesize single-walled carbon nanotubes (SWCNTs) with specific chirality, but the mechanism of the growth selectivity is vaguely understood. We propose a strategy to identify the atomic structure as well as the structure evolution of the Co-W-C ternary SWCNT catalyst. The key is to use a thin SiO2 film as the catalyst support and observation window. As the catalyst is uniformly prepared on this SiO2 film and directly used for the SWCNT synthesis, this method has an advantage over conventional methods: it creates an opportunity to obtain original, statistical, and dynamic understanding of the catalyst. As a technique, atomic-scale imaging directly on SiO2 serves as a powerful and versatile tool to investigate nanocrystals and high-temperature reactions; for the synthesis of SWCNTs, this work successfully visualizes the structure and evolution of the catalyst and illuminates the possible nucleation sites of the chirality-specific growth.

10.
Opt Express ; 27(13): 17463-17473, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31252705

RESUMO

Highly efficient exciton-exciton annihilation process unique to one-dimensional systems is utilized for super-resolution imaging of air-suspended carbon nanotubes. Through the comparison of fluorescence signals in linear and sublinear regimes at different excitation powers, we extract the efficiency of the annihilation processes using conventional confocal microscopy. Spatial images of the annihilation rate of the excitons have resolution beyond the diffraction limit. We investigate excitation power dependence of the annihilation processes by experiment and Monte Carlo simulation, and the resolution improvement of the annihilation images can be quantitatively explained by the superlinearity of the annihilation process. We have also developed another method in which the cubic dependence of the annihilation rate on exciton density is utilized to achieve further sharpening of single nanotube images.

11.
ACS Nano ; 12(4): 3994-4001, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29613761

RESUMO

Single-walled carbon nanotubes (SWCNTs) are attracting increasing attention as an ideal material for high-performance electronics through the preparation of arrays of purely semiconducting SWCNTs. Despite significant progress in the controlled synthesis of SWCNTs, their growth mechanism remains unclear due to difficulties in analyzing the time-resolved growth of individual SWCNTs under practical growth conditions. Here we present a method for tracing the diverse growth profiles of individual SWCNTs by embedding digitally coded isotope labels. Raman mapping showed that, after various incubation times, SWCNTs elongated monotonically until their abrupt termination. Ex situ analysis offered an opportunity to capture rare chirality changes along the SWCNTs, which resulted in sudden acceleration/deceleration of the growth rate. Dependence on growth parameters, such as temperature and carbon concentration, was also traced along individual SWCNTs, which could provide clues to chirality control. Systematic growth studies with a variety of catalysts and conditions, which combine the presented method with other characterization techniques, will lead to further understanding and control of chirality, length, and density of SWCNTs.

12.
Nanoscale ; 10(12): 5449-5456, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29493702

RESUMO

We present a systematic study on the fabrication, characterization and high temperature surface enhanced Raman spectroscopy (SERS) performance of SiO2 coated silver nanoparticles (Ag@SiO2) on a flat substrate, aiming to obtain a thermally robust SERS substrate for monitoring high temperature reactions. We confirm that a 10-15 nm SiO2 coating provides a structure stability up to 900 °C without significantly sacrificing the enhancement factor, while the uncoated particle cannot retain the SERS effect above 500 °C. The finite difference time domain (FDTD) simulation results supported that the SiO2 coating almost has no influence on the distribution of the electric field but only physically trapped the most enhanced spot inside the coating layer. On this thermally robust substrate, we confirmed that the SERS of horizontally aligned single walled carbon nanotubes is stable at elevated temperatures, and demonstrate an in situ Raman monitoring of the atmosphere of the annealing process of nanodiamonds, in which the interconverting process of C-C bonds is unambiguously observed. We claim that this is a first experimental proof that the high temperature SERS effect can be preserved and applied in a chemical reaction at temperature above 500 °C. This versatile substrate also enables novel opportunities for observing growth, etching, and structure transformation of many 0D and 2D nano-materials.

13.
ACS Nano ; 11(11): 11497-11504, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29112380

RESUMO

Ballistic transport and sub-10 nm channel lengths have been achieved in transistors containing one single-walled carbon nanotube (SWNT). To fill the gap between single-tube transistors and high-performance logic circuits for the replacement of silicon, large-area, high-density, and purely semiconducting (s-) SWNT arrays are highly desired. Here we demonstrate the fabrication of multiple transistors along a purely semiconducting SWNT array via an on-chip purification method. Water- and polymer-assisted burning from site-controlled nanogaps is developed for the reliable full-length removal of metallic SWNTs with the damage to s-SWNTs minimized even in high-density arrays. All the transistors with various channel lengths show large on-state current and excellent switching behavior in the off-state. Since our method potentially provides pure s-SWNT arrays over a large area with negligible damage, numerous transistors with arbitrary dimensions could be fabricated using a conventional semiconductor process, leading to SWNT-based logic, high-speed communication, and other next-generation electronic devices.

14.
Nanoscale ; 8(36): 16363-16370, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27714089

RESUMO

We observe field emission between nanogaps and voltage-driven gap extension of single-walled carbon nanotubes (SWNTs) on substrates during the electrical breakdown process. Experimental results show that the gap size is dependent on the applied voltage and humidity, which indicates high controllability of the gap size by appropriate adjustment of these parameters in accordance with the application. We propose a mechanism for the gap formation during electrical breakdown as follows. After small gaps are formed by Joule heating-induced oxidation, SWNTs on the anode side are electrochemically etched due to physically-adsorbed water from the air and the enhanced electric field at the SWNT tips. Field emission is measured in a vacuum as a possible mechanism for charge transfer at SWNT gaps. The relationship between the field enhancement factor and geometric features of SWNTs explains both the voltage dependence of the extended gap size and the field emission properties of the SWNT gaps. In addition, the similar field-induced etching can cause damage to adjacent SWNTs, which possibly deteriorates the selectivity for cutting metallic pathways in the presence of water vapor.

15.
Nanoscale ; 8(29): 14156-62, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27382988

RESUMO

Selective synthesis of single-walled carbon nanotubes (SWNTs) with controlled properties is an important research topic for SWNT studies. Here we report a thiophene-assisted chemical vapor deposition (CVD) method to directly grow highly conductive SWNT thin films on substrates, including transparent ones. By adding low concentration thiophene into the carbon feedstock (ethanol), the as-prepared carbon nanotubes demonstrate an obvious up-shift in the diameter distribution while the single-walled structure is still retained. In the proposed mechanism, the change in the diameter is sourced from the increase in the carbon yield induced by the sulfur-containing compound. Such SWNTs are found to possess high conductivity with 95% SWNTs demonstrating on/off ratios lower than 100 in transistors. More importantly, it is further demonstrated that this method can be used to directly synthesize dense SWNT networks on transparent substrates which can be utilized as transparent conductive films (TCFs) with very high transparency. Such TCFs can be applied to fabricate a light modulating window as a proof-of-concept. The present work provides important insights into the growth mechanism of SWNTs and great potential for the preparation of TCFs with high scalability, easy operation and low cost.

16.
Nanoscale ; 6(15): 8831-5, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24956406

RESUMO

An organic film-assisted electrical breakdown technique is proposed to selectively remove metallic (m-) single-walled carbon nanotubes (SWNTs) in full length towards creation of pure semiconducting SWNT arrays which are available for the large-scale fabrication of field effect transistors (FETs). The electrical breakdown of horizontally aligned SWNT arrays embedded in organic films resulted in a maximum removal length of 16.4 µm. The removal of SWNTs was confirmed using scanning electron microscopy and Raman mapping measurements. The on/off ratios of FETs were improved up to ca. 10,000, similar to that achieved for in-air breakdown. The experimental results suggest that exothermic oxidation of organic films induces propagation of oxidation reaction, hence the long-length removal of m-SWNTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA